Lecture 1: Intro to PDE

Math 404

8/27/25

Review Material

FUNCTIONS

$$f: \mathbb{R} \to \mathbb{R}$$
 $f: \mathbb{R}^n \to \mathbb{R}$ $\vec{f}: \mathbb{R} \to \mathbb{R}^m$ $\vec{F}: \mathbb{R}^n \to \mathbb{R}^m$

Examples?

Vector notation: \vec{v} , v_i , $\vec{v} \cdot \vec{w}$, $v_i v_i$

Notions of *change*: ∂_i , ∇ , $D_{\vec{v}}$, div, curl, Δ

Notions of integration: $\int_a^b dx$, $\iint_\Omega dA$, $\iiint_\Omega dV$, $\oint ds$, $\oiint dS$

Sequences, series, and associated notation: a_n , $f_n(x)$, $\sum a_i$, $\sum f_n(x)$

Calculus II and III. ODE

HW1—http://webster.math.umbc.edu/HW1&.pdf GET STARTED!

Modeling and PDEs

Partial Differential Equations (versus *ordinary* differential equations) are the language of physical sciences (*continuum* phenomena)

Mathematical modeling of phenomena:

Newton's second law, conservation of energy, principle of virtual work, Hamilton's principle, principle of least action

A branch of mathematics unto itself

PDEs do arise in application to other pure math fields; $L(x, y, u, D^{\alpha}) = 0$

Discrete versus continuous

$$\int_a^b f(x)dx \quad \leftrightarrow \quad \sum_{i=1}^N f(x_i^*) \Delta x; \qquad \quad \frac{df}{dx}\Big|_{x_0} \quad \leftrightarrow \quad \frac{f(x_0+h)-f(x_0)}{h}$$

Limiting procedures

Webster PDEs Fall 24 3/21

Applied Mathematics: The A Big Picture

- + math motivated by a problem in the "real world"
- + studying *phenomena of interest* using mathematical models
- + developing new theory or applying existing theory in doing so

Modeling II

...all models are approximations. Essentially, all models are wrong, but some are useful. However, the approximate nature of the model must always be borne in mind....

-George Box, Empirical Model-Building, 1987

A map is not the territory it represents, but, if correct, it has a similar structure to the territory, which accounts for its usefulness.

—Alfred Korzybski, Science and Sanity, 1933

Motivational Examples

x(t) a real-valued function

$$mx''(t) + dx'(t) + kx(t) = 0$$

u(x, t) is a real valued function

$$u_{tt}(x,t) + du_t(x,t) - c^2 u_{xx}(x,t) = 0$$

Different notions of *change* in the same equation; *evolution* of states along one variable

hster PDFs Eall 24 6/21

Some Famous PDEs and Some Terminology

z(x, t) a real-valued function

$$z_t + a(x,t)z_x = f(x,t)$$

 $\theta(\vec{x},t)$ a real-valued function

$$\theta_t = K(\vec{x})\Delta\theta$$

 $\Psi(\vec{x},t)$ a complex-valued function

$$\Psi_t = i\hbar\Delta\Psi + V(\Psi)$$

 $\vec{v}(\vec{x},t)$ a vector-valued function, $p(\vec{x},t)$ a real-valued function

$$\vec{v}_t - \nu \Delta \vec{v} + (\vec{v} \cdot \nabla) \vec{v} + \nabla p = 0, \quad \nabla \cdot \vec{v} = 0$$

w(x, t) a real-valued function

$$w_{tt} + Dw_{xxxx} = f(w)$$

 $u(\vec{x}, t)$ a real-valued function

$$-\Delta u = F$$

Domains and Boundaries II

PDEs and boundary conditions, example:

$$\begin{cases} \Delta u(x,y) = -\lambda u & \text{in } \Omega \\ u = 0 & \text{on } \Gamma \end{cases}$$

$$\begin{cases} u_{xx} + u_{yy} + \epsilon u = F(x, y) & \text{in } \Omega \\ \nabla u \cdot \vec{n} = 0 & \text{on } \Gamma \end{cases}$$

$$C^{\alpha}(\Omega)$$
 spaces; example: $u \in C^{2}(\Omega) \cap C^{0}(\overline{\Omega})$

Webster Fall 24

Differential Operators and Terms I

General notation:
$$\partial_i$$
, ∂_{x_i} , ∂_x , D , D^{α}

Operator
$$L$$
: $L(x)$, $L(x, \partial_x)$, $L(x, \partial_x, u)$, ...

$$L[f] = af'' + bf' + cf, L(x)[f] = a(x)f'(x),$$

$$L(f) = a(x)f^2(x), \quad L(x,f) = x\sin(f(x))$$

$$Af = -\Delta f$$
, $A(\vec{x})f = -\sum_{i,j}^{n} a_{ij}(\vec{x})\partial_{x_i}\partial_{x_j}f(x_1,...,x_n)$.

A PDE/BVP is **homogeneous** if all terms depend on the solution variable.

Order: The highest order derivative present; sometimes we talk about spatial order versus temporal order.

Coefficients: Things in front of differential operators.

Data: Boundary, Initial, Inhomogeneous terms

 4 □ ▶

Differential Operators and Terms II

$$\partial_{x}u = 0$$

$$\partial_{x}u + \partial_{t}u = 0$$

$$\partial_{x}u + \partial_{t}u = f(x)$$

$$a(x)\partial_{x}u + \partial_{t}u = f(x, t)$$

$$\partial_{x}u + \partial_{t}u = f(u)$$

$$g(u)\partial_{x}u + \partial_{t}u = f(x)$$

$$G(\partial_{x}u) + \partial_{t}u = 0$$

Application: Aeroelastic Instability of Suspension Bridges

Tacoma Narrows Bridge Catastrophe, 1940; "Galloping Gertie"

What are the mechanisms of bridge flutter?

Choose an aeroelastic model and:

- determine what causes flutter behaviors to shift from longitudinal to torsional
- use analytical/numerical methods to predict (for this model) for what parameters this shift will occur
- explicitly construct periodic solutions for this model

Webster PDEs Fall 24

Bridge Plate Model with Simple Aerodynamic Loading

$$\begin{cases} w_{tt} + kw_t + \Delta^2 w + \left[P - S \int_{\Omega} w_x^2\right] w_{xx} = p_0(x, y) + \alpha w_y & \text{in } \Omega \times (0, T) \\ w = w_{xx} = 0 & \text{on } \{0, \pi\} \times [-\ell, \ell] \\ w_{yy} + \sigma w_{xx} = w_{yyy} + (2 - \sigma) w_{xxy} = 0 & \text{on } [0, \pi] \times \{-\ell, \ell\} \\ w(x, y, 0) = w_0(x, y), & w_t(x, y, 0) = v_0(x, y) & \text{in } \Omega. \end{cases}$$

where $\Delta w = w_{xx} + w_{yy}$, so $\Delta^2 w = w_{xxxx} + 2w_{xxyy} + w_{yyyy}$

Webster PDEs Fall 24

13 / 21

Methane Hydrates I

Methane Hydrates (Clathrates)

Hydrates

Image Credit: USGS and NETL

Hydrate Regions and Stability

Image Credit: NETL

Webster PDEs Fall 24

Methane Hydrates: Fuel versus Feedback

Natural Gas (energy, GOOD) vs. Global Climate Instability (very bad) Greenhouse effect and greenhouse gasses

Feedback mechanisms: microphone squealing!

Webster

Fall 24

Hydrate Formation: Conservation of Mass for Methane

Concentration: (mass of methane per unit volume per unit time)

$$\partial_t \left[\phi \left(S_I \rho_I \chi_I^M + S_h \rho_h \chi_h^M \right) \right] + \nabla \cdot \left[\rho_I \chi_I^M \mathbf{q} - \phi S_I \rho_I D_0 \nabla \chi_I^M \right] = f_M \tag{1}$$

Maximum solubility constraint: $\chi_{I,max}^{M}(p,\theta,\chi_{I}^{S}) \approx \chi_{I,max}^{M}(x)$.

Thermodynamic (Gibbs phase rule) relation:

$$\begin{cases} \chi_{I}^{M} \leq \chi_{I,max}^{M}(x); & S_{I} = 1\\ \chi_{I}^{M} = \chi_{I,max}^{M}(x); & S_{I} \leq 1\\ (\chi_{I,max}^{M}(x) - \chi_{I}^{M}) \cdot (1 - S_{I}) = 0 \end{cases}$$
 (2)

General Model: $\Omega \subset \mathbb{R}^N$, N = 1, 2, 3, $\partial \Omega$ smooth

$$\begin{cases} u_t - D\Delta v + \nabla \cdot [v\mathbf{q}] = f \\ (v, u) \in \beta(x; \cdot) \equiv \{(v, v) : v \le v^*(x)\} \cup \{v^*(x)\} \times [v^*(x), R) \\ v = 0 \text{ on } \partial\Omega \end{cases}$$
 (3)

Webster PDEs Fall 24

Application: Piezoelectric Energy Harvesting

Goal: understand axial cantilever flutter for energy harvesting

- Remote sources of power
- Harvest from ambient, low-velocity flows
- Reduction of battery dependence

Problem: capturing and predicting nonlinear large deflections of a cantilever (LCOs) for optimization

Recent Result—Baseline Theory of Solutions

$$\begin{cases} w_{tt} + D\partial_x^4 w - D\partial_x [w_{xx}^2 w_x] + D\partial_x^2 [w_x^2 w_{xx}] + \partial_x [w_x \int_x^L u_{tt}] = p(x, t) \\ u_{tt}(x) = -\int_0^x [w_{xt}^2 + w_x w_{xtt}] d\xi \\ w(0) = w_x(0) = 0; \quad w_{xx}(L) = w_{xxx}(L) = 0 \\ w(0) = w_0, \quad w_t(0) = v_0 \end{cases}$$

Theorem (Deliyianni and W., AMO, 2020)

Let $p, p_t, p_{xx} \in L^2(0, T; L^2(0, L))$. For smooth data $w_0 \in \mathcal{D}(A^2)$, $w_1 \in \mathcal{D}(A)$, strong solutions exist up to some time $T^*(w_0, w_1)$. For all $t \in [0, T^*)$, the solution w is unique and obeys the energy identity:

$$E(t) + D_0^t = E(0) + \int_0^t (p, w_t) d\tau.$$

$$\mathcal{D}(A) = \{ w \in H^4(0, L) : w(0) = w_x(0) = 0, \ w_{xx}(L) = w_{xxx}(L) = 0 \}$$

Application: Ocular Dynamics

Goal 1: Understand the dynamics of the eye (lamina cribrosa) in response to daily pressure changes

Goal 2: Attempt to use model (and analysis thereof) to say something about glaucoma onset

Webster PDEs Fall 24

Biot's Equations of Poro-elasticity for Tissue Modeling

 $-\mu_e \Delta \mathbf{u} - (\lambda_e + \mu_e) \nabla (\nabla \cdot \mathbf{u}) + \mu_v \Delta \mathbf{u}_t - (\lambda_v + \mu_v) \nabla (\nabla \cdot \mathbf{u}_t) + \alpha \nabla p = \mathbf{F}$

$$(\alpha \nabla \cdot \mathbf{u})_t - \nabla \cdot (k(\nabla \cdot \mathbf{u})\nabla p) = S \qquad \text{in} \quad \Omega \times (0, T)$$

$$\nabla \cdot \mathbf{u} = d_0 \qquad \text{in} \quad \Omega, \ t = 0$$

$$\mathbf{T}(\mathbf{u}, p) \, \mathbf{n} = \mathbf{g} \qquad \text{on} \quad \Gamma_N \times (0, T)$$

$$\mathbf{u} = \mathbf{0} \qquad \text{on} \quad \Gamma_D \times (0, T)$$

$$\nabla p \cdot \mathbf{n} = 0 \qquad \text{on} \quad \Gamma_N \times (0, T)$$

$$p = 0 \qquad \text{on} \quad \Gamma_{D,p} \times (0, T)$$

$$-k(\nabla \cdot \mathbf{u})\nabla p \cdot \mathbf{n} = \psi \qquad \text{on} \quad \Gamma_{D,y} \times (0, T)$$

Key Observation: The imbalance of elastin and collagen, due to natural collagen degradation, leads to less regular responses to stark changes in IOP.

Webster PDEs Fall 24 21/21

in $\Omega \times (0, T)$