Lecture 1: Intro to PDE
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Review Material

FUNCTIONS
f:R-R f:R"->R f:R—=R"™ F:R' —R"
Examples?
Vector notation: V, v;, V-w, vv;
Notions of change: 9;, V, Dy, div, curl, A

Notions of integration: fab dx, fo dA, fffo dv, ¢ ds, ¢p dS

oo
Sequences, series, and associated notation: a,, f,(x), Za,-, Z fa(x)
i n=1
Calculus Il and 111, ODE

HW1—http://webster .math.umbc.edu/HW1&.pdf
GET STARTED!
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http://webster.math.umbc.edu/HW1&.pdf

Modeling and PDEs

Partial Differential Equations (versus ordinary differential equations) are the
language of physical sciences (continuum phenomena)

Mathematical modeling of phenomena:

Newton's second law, conservation of energy, principle of virtual work, Hamilton's
principle, principle of least action

A branch of mathematics unto itself

PDEs do arise in application to other pure math fields; L(x,y,u,D*) =0

Discrete versus continuous

b N
« . df f(XO + h) — f(Xo)
/a f(x)dx <+ ; f(x")Ax; ax e “ b

Limiting procedures
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Applied Mathematics: +he A Big Picture

+ math motivated by a problem in the “real world”
+ studying phenomena of interest using mathematical models

+ developing new theory or applying existing theory in doing so
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Modeling Il

...all models are approximations. Essentially, all models are
wrong, but some are useful. However, the approximate
nature of the model must always be borne in mind....

—George Box, Empirical Model-Building, 1987

A map is not the territory it represents, but, if correct, it
has a similar structure to the territory, which accounts for its
usefulness.

—Alfred Korzybski, Science and Sanity, 1933

Webster Fall 24 5/21



Motivational Examples

x(t) a real-valued function

mx"(t) + dx'(t) + kx(t) =0

u(x, t) is a real valued function

(X, t) 4 dug(x, t) — Cu(x, t) =0

Different notions of change in the same equation; evolution of states
along one variable




Some Famous PDEs and Some Terminology

z(x, t) a real-valued function
ze + a(x, t)z, = f(x, t)

6(x, t) a real-valued function
0, = K(X)A0

V(X,t) a complex-valued function
W, = AV + V(V)
V(X, t) a vector-valued function, p(x,t) a real-valued function
v, —vAV+ (V- V)i +Vp=0, V-7=0
w(x, t) a real-valued function
Wyt + DWipx = (W)

u(X, t) a real-valued function
—Au=F
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Domains and Boundaries I

PDEs and boundary conditions, example:

Au(x,y) = —Au in Q
u=20 on [

U + Uy, +eu=F(x,y) in Q
Vu-n=0 on [

CY(Q) spaces;  example: u € C3(Q)N C%Q)




Differential Operators and Terms |

General notation: 0;, 0, O, D, D“

Operator L: L(x), L(x,0x), L(x,0x,u),..
L[f] = af” + bf' + cf, L(x)[f] = a(x)f'(x),

L(f) = a(x)f?(x), L(x,f)= xsin(f(x))

Af = =Af,  AX)f = —Z ;i (X) 05 O F (X1, o0y Xn)-

A PDE/BVP is homogeneous if all terms depend on the solution
variable.

Order: The highest order derivative present; sometimes we talk
about spatial order versus temporal order.

Coefficients: Things in front of differential operators.

Data: Boundary, Initial, Inhomogeneous terms




Differential Operators and Terms Il

ou=20

Oxu—+ 0tu=20
Oyt + Oru = f(x)
a(x)0xu + Oru = f(x, t)
Oxt + Oru = f(u)
g(u)oxu + Oru = f(x)
G(Oxu) +0ru=0




Application: Aeroelastic Instability of Suspension Bridges

Tacoma Narrows Bridge Catastrophe, 1940; “Galloping Gertie"
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https://youtu.be/baDEOM-wvUo
https://youtu.be/j-zczJXSxnw?t=5
https://youtu.be/j-zczJXSxnw?t=200

Research Question

What are the mechanisms of bridge flutter?

Choose an aeroelastic model and:

@ determine what causes flutter behaviors to shift from longitudinal to torsional

@ use analytical /numerical methods to predict (for this model) for what
parameters this shift will occur

@ explicitly construct periodic solutions for this model
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Bridge Plate Model with Simple Aerodynamic Loading

Wy + kwy + A%w + [P — SfQ Wf] Wi = po(x,y) +aw, inQx(0,T)

W= Wy =0 on {0,7} x [—¢,{]
Wy + OWyx = Wyyy + (2 — )Wy =0 on [0, 7] x {—¢, ¢}
W(Xv)/vo) = WO(va)v Wt(X7y70) = VO(va) in .

_ 2., _
where  Aw = Wy + Wy, SO AW = Wyox + 2Wiyy + Wyyyy
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Methane Hydrates |

Methane Hydrates (Clathrates)

Image Credit: USGS and NETL
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https://www.youtube.com/watch?v=_rQkTBC0Rzo

Hydrate Regions and Stability

Arctic methane hydrate
deposits above and .
below lower limit of 2 DR'&-:&'NG
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Image Credit: NETL
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Methane Hydrates: Fuel versus Feedback

Natural Gas (energy, GOOD) vs. Global Climate Instability (very bad)
Greenhouse effect and greenhouse gasses

Increased greenhouse
warming and CO,
formation from
methane

Methage emissions

Increased warming

+  of the tundra surface
(permafrost areas)
and some ocean
waters causes
increased methane
emissions

Feedback mechanisms: microphone squealing!
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Hydrate Formation: Conservation of Mass for Methane

Concentration: (mass of methane per unit volume per unit time)

Ot [0 (Siorxt” + Shonxt') | + V- [pixt’a — ¢Sip1DeV x| = fu (1)
Maximum solubility constraint: XMmaX(p,Q,Xf) ~ X{"/’max(x).

Thermodynamic (Gibbs phase rule) relation:
X S X max(x)i S1=1
X1 = Xl max (); S <1 (2)
(X1lmax () = x1") - (1= S1) =0
General Model: Q c RN, N =1,2,3, 9Q smooth
ug—DAv+V-[vq] =f
(v,u) € Bl ) ={(v,v): v < v ()} U{v(x)} x [v*(x), R) 3)
v=0on 00
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Application: Piezoelectric Energy Harvesting

Goal: understand axial cantilever flutter for energy harvesting
@ Remote sources of power
@ Harvest from ambient, low-velocity flows

@ Reduction of battery dependence

» Bal Experiment

Problem: capturing and predicting nonlinear large deflections of a cantilever (LCOs) for
optimization
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https://drive.google.com/open?id=0B7p6_jYputmDT09EQ0IyUFZZakU

Recent Result—Baseline Theory of Solutions

wie + DOtw — DO Wi wi] + DIZ[WEwis] + Ox[wi fXL ure] = p(x, t)
Utt(X) = - fox I:Wst + WXWXtt} dé‘

w(0) = wi(0) = 0; wix(L) = wix(L) =0

W(O) = Wo, Wt(o) =W

Theorem (Deliyianni and W., AMO, 2020)

Let p, pr, pxx € L?(0, T; L%(0,L)). For smooth data wy € D(A?), wq € D(A),
strong solutions exist up to some time T*(wy, wq). For all t € [0, T*), the
solution w is unique and obeys the energy identity:

E(t) + Dt = E(0) + /Ot(p, we)dr.

D(A) = {w € H*(0,L) : w(0) = wx(0) = 0, win(L) = wi(L) =0}
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Application: Ocular Dynamics

Central Retinal Vein ~ Central Retinal Artery

@

Figure 0. 3D mges (401 g consircte o ceumic | sampe) sl pas; and ) poros e Posterior Ciliary Arteries

Goal 1: Understand the dynamics of the eye (lamina cribrosa) in response to daily
pressure changes

Goal 2: Attempt to use model (and analysis thereof) to say something about glaucoma

onset
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Biot's Equations of Poro-elasticity for Tissue Modeling

—peAu — (Mo + 1)V(V - u) + pvAue — (A + p0)V(V -ug) +aVp =F

(aV-u)f =V - (k(V-u)Vp)=S
V-u=d
T(u,p)n =g
u=20
Vp-n=0
p=0
—k(V-u)Vp-n=14

on

on

on

on

on

Qx(0,T)
Qx(0,T)
Q,t=0

I'N X (0, T)
o x(0,T)
'y x (0, T)
ppx(0,T
Ipy x (0,7

Key Observation: The imbalance of elastin and collagen, due to
natural collagen degradation, leads to less regular responses to stark

changes in 10P.
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