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Heat Equation Activity II Solutions

MATH 404, Fall 2025

1. Slowing Down Infinite Speed of Propagation

(a) Consider the convolution solution: (φ ∗ S)(x, t) =
∫∞
−∞ φ(y)S(x − y, t)dy. Explain in a sentence or two

what infinite speed of propagation means in terms of this solution.

We note that to compute the (now unique) solution φ ∗ S at any point in space-time, (x, t), we must

know the initial data φ(y) everywhere in space—to compute an integral of this form (which constitutes

a weighted average of the initial data and the heat kernel), we have to have point-wise values of φ

everywhere in R. We think of this as infinite speed because a change (or perturbation) to the initial data

φ anywhere instantanousely changes the solution u(x, t) = (φ ∗S)(x, t) everywhere in space-time. Hence,

instantaneous change =⇒ infinite speed (of propagation of information).

(b) On the back of this page, consider replacing Fourier’s/Darcy’s/Ficke’s Law for flux q = −Dux with

the relaxation (Maxwell-Cattaneo) Law τqt + q = −Dux, where τ > 0 is a parameter. Differentiate

the conservation law ut + ∂xq = 0 in time, and differentiate the MC law in space. Combine them to

eliminate the variable q. What type of equation do you now have? Explain in a sentence or two.

The system that originally gave us the heat equation was algebraic and differential:ut + qx = 0

q = −Dux,
(1)

where u is the quantity of interest (operating as a density or concentration) in a conservation law, and

q is the flux (defined in terms of u) by a constitutive relation. Putting these together, it is clear we get

the HEQ.

We now replace the constitutive law above with τqt + q = −Dux (the Maxwell-Cattaneo Law). This

represents introducing a so-called relaxation time, with a relaxation parameter τ > 0. We then have the

system: ut + qx = 0

τqt + q = −Dux.
(2)

Taking ∂t of the first equation and ∂x of the second, we obtain:utt + qxt = 0

τqxt + qx = −Duxx.
(3)

Using algebra, we obtain:

τutt − qx −Duxx = 0.

We then recall that the conservation law says that qx = −ut, so we can eliminate q to obtain the final

PDE in u:

utt + [1/τ ]ut − [D/τ ]uxx = 0.

Recall that this is a damped wave equation. The damping coefficient is [1/τ ] and the wave speed is

c = [D/τ ]1/2.



(c) Explain how changing the constitutive law provided finite speed of propagation, without destroying the

diffusive nature of the problem. By introducing the relaxation parameter τ in the constitutive law (i.e.,

Fourier/Darcy/Fick 7→ Maxwell-Cattaneo), we went from the HEQ to a damped WEQ. The HEQ is

diffusive and has the property of infinite speed of propagation. The damped WEQ is also diffusive, but

has finite speed of propagation. In this way retain one essential feature of the dynamics, but eliminate

one (perhaps) bothersome one.

2. Motivating Fourier

(a) Recall the wave-train form: u(x, t) = Aei(kx−ωt). Plug in to the HEQ and solve for ω(k). After doing

this, plug back into the wave train form to get an expression for u only in terms of k.

We have solved for the dispersion relation for the HEQ before. We obtain, plugging the wave-train into

the HEQ: −iω = D(ik)2, which yields ω(k) = −iDk2. Plugging this into the wave train yields:

u(x, t) = A exp i(kx+ iDk2t) = Ae−Dk2teikx.

This function is complex-valued, i.e., û(k) ∈ C, and solves the HEQ for each k.

Note that in this construction, the constant A can actually depend on the wave number, k, without

modifying anything. Thus we have a general expression, which we will call ũ(k, t) = A(k)e−Dk2teikx.

What can we do with it?

Well, if it solves the HEQ, we’ll need it to satisfy an initial condition. We seem to have û(k, 0) = A(k)eikx.

That isn’t too helpful...

(b) Now, since we have a function for each k, we can superpose all of them to obtain another general solution

for the HEQ. This produce an integral of the form

u(x, t) =

∫ ∞
−∞

A(k)eikxe−Dk2tdk.

We can check to see (differentiating through integrals) that this solves the HEQ. So what about that

initial condition (for the Cauchy problem)? This begs the question: When can we choose A(k) in such

a way that

u(x, 0) = φ(x) and u(x, 0) =

∫ ∞
−∞

A(k)eikxdk?

This question is a motivation for the Fourier transform.

Namely, given φ(x) find A(k) so that

φ(x) =

∫ ∞
−∞

A(k)eikxdk.
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