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Heat Equation Activity: Qualitative Properties and Other Fun!

MATH 404, Fall 2025
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1. Energies. Define the thermal energy of a solution u at time ¢ to be: E(t) = 3 / [u(z,t)]*d.
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Do either of the following: (i) Multiply the heat equation by w(z,t) and then integrate for all x € R; then
integrate by parts in space in order to obtain an energy relation (using the expression for E(t) above);

OR (ii) Compute d/dt of E(t) and simplify using integration by parts and the heat equation itself.
Multiplying and integrating give us

/C>O ut(f,t)u(@t)df - D/_oo um(«f,t)u(§,t)d5 =0.
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Using the relation a[f ] =2f'(t)f(t) and integrating by parts in « in the second term, we have
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2dt
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Since we have assumed that the solution w(z,t) decays to zero as |z| — oo, the boundary term goes

away, yielding
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Then, we can use the FTC to rewrite:
1d [
e T =—D/ ua(E,0)PdE = () D//Tumﬁm
The first equality above can also be rewritten, using the definition of the energy E(t) = 3 f u(z,t))?dx
as
d

th( ) = =Dlfug|[72 -

Explain, from your previous answer, why energies decay for solutions to the heat equation.

From the first description above, we see that the time rate of change of E(t) is negative, indicating

2 is a nonnegative function, its integral is

decay. From the second description, it is clear that since [u,]
also nonnegative and being subtracted from F(0), so E(t) < E(0). In fact, for any interval of time [s, ],

we will have E(t) < E(s), which is another way of saying that E(t) is a decreasing function.

2. Superposition and Differences.

(a)

Suppose that v(z,t) is a solution to equation (??) with initial data v(x,0) = ¢1(z) and w(zx, t) is another
solution with w(z,0) = ¢o(x).
What Cauchy problem does z = v — w solve?

By the principle of superposition, any linear combination of solutions (to a linear, homogeneous PDE)

is also a solution. Hence z = v — w solves the HEQ. We can actually just show this too, since:
2zt =[v—w)y = v —wy = Dugy — Dwy, = Daz[v —w| = Dzyy.
It is clear that z(x,0%) = v(z,0") —w(z,0") = ¢1(z) — Pa(x).
So the cauchy problem that z solves is just:
uy — Duge =0, zeR, t>0
}i\r"% u(z,t) = ¢1(z) — p2(z), zeR.



(b)

Since z solves the heat equation, it satisfies the energy relation from the previous part. Write this out

L /OO [2(¢,1)]2d¢. Recall:

for z in terms of L?(R) norms. Use the notation E,(t) = 3

[ wiPr = [ oo — wwiPde = el = 10— wlagey
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Since any solution to the HEQ satisfies the energy relation E(t) < E(0), and z is a solution, we know that, in

particular:

1 1
E.(t) E.(0) = llv(@t) —w@ )i < 5llv(,0) —w(z,0)|[7z)-

This can be re-written once more as

o = wlf* < [l¢1 — .

3. Uniqueness and Continuous Dependence

(a)

Using the energy relation for E,(t) from the previous part, explain (in a couple sentences) why the HEQ

has the continuous dependence property in the sense of L?(R).
By the above inequality,

o —wl? < |61 = %,
we see that we can make the solutions v and w as close as we want (in the sense that we can make the
norm ||v — w||2(r) small) by choosing the initial data ¢; and ¢, close (in the sense that |[¢1 — @2l 12(r)
is small). Thus, the solutions can be made “close together” at time ¢ by choosing the data ¢; and ¢y to
be sufficiently “close together.”
Suppose that v and w are two solutions that have the same initial conditions (i.e., ¢1(x) = ¢2(x)). What
does the energy relation for E,(t) say in this case?

In this case, we would have E,(0) = (.5)||¢1 — ¢2||> = 0. Then by the energy inequality, we would have:

1
E.() SE(0)=0 = 0=E.(t)=lv—ul

From this we see that v(z,t) — w(z,t) = 0 as functions in L?(R) for each ¢ > 0. But this means that

v(x,t) = w(x,t), and hence the solution to the heat equation Cauchy problem must be unique.

4. Well-posedness

Explain in one or two sentences why the HEQ Cauchy problem is well-posed.

We have established both Continuous Dependence (on the data) and Uniqueness for the HEQ Cauchy problem.

We know that the problem has a solution, since the convolution solution exists and can solve the Cauchy

problem for arbitrary data ¢. Hence we have existence, uniqueness, and continuous dependence for the

Cauchy problem, making it well-posed.



5. Bonus Exploration: Maxwell-Cattaneo

We replace Fourier’s/Darcy’s/Ficke’s Law for flux ¢ = —Du, with the relaxation (Maxwell-Cattaneo) Law
7qs + g = —Duy, where 7 > 0 is a parameter. Differentiate the conservation law wu; + 0,¢ = 0 in time, and
differentiate the MC law in space. Combine them to eliminate the variable g. What type of equation do you

now have? Explain in a sentence or two.

The system that originally gave us the heat equation was algebraic and differential:

U+ gz =0
(2)

q= _Duwv
where u is the quantity of interest (operating as a density or concentration) in a conservation law, and ¢ is
the flux (defined in terms of u) by a constitutive relation. Putting these together, it is clear we get the HEQ.

We now replace the constitutive law above with 7¢;+¢ = —Du, (the Maxwell-Cattaneo Law). This represents

introducing a so-called relaxation time, with a relaxation parameter 7 > 0. We then have the system:

U+ gy =0 (3)
TGt +q = —Du,.

Taking 0; of the first equation and 0, of the second, we obtain:

utt + qut =0
Tqut + @z = =Dz,

Using algebra, we obtain:

TUtt — @z — Dugy = 0.
We then recall that the conservation law says that ¢, = —u¢, so we can eliminate g to obtain the final PDE
in u:
ug + [1/7]ug — [D/ 7]tz = 0.

Recall that this is a damped wave equation. The damping coefficient is [1/7] and the wave speed is ¢ =
[D/7]'/2.



