
10/5/24
Homework 5: Heat and Diffusion

MATH 404, Fall 2024

Due: ∼F, 10/17.

This assignment is about the heat equation on R (and associated topics).

1. (Bell 2.4, #6) Gaussian Integral. Prove that

∫ ∞
−∞

e−r
2
dr =

√
π.

(There are many ways to do this, but the easiest involves a change to polar coordinates. This
cannot be done straightforwardly using the FTC Part 2.)

2. (Strauss 2.4; Bell, 8 p.1) Fundamental Properties of the Heat Equation and Kernel.

(a) Show that if u solves the heat equation, ut = Duxx, then for any α > 0, u(αx, α2t) is
also a solution.

(b) Consider a solution u to the heat equation ut = Duxx.

i. Show that, for any y ∈ R, u(x− y, t) is also a solution.

ii. Explain, in a couple sentences, why∫ ∞
−∞

f(y)u(x− y, t)dy

is also a solution (supposing that f is a nice—say bounded and piece-wise continuous—
function).

iii. Show that ux, ut and uxx are all also solutions to the heat equation. Convince
yourself that any derivative of the solution u is also a solution to the heat equation.

(c) Consider the standard heat kernel S(x, t) =
1

2
√
πDt

exp

(
−x2

4Dt

)
.

i. Show that

∫ ∞
−∞

S(x− y, t)dx = 1 for all y ∈ R and all t > 0.

(Don’t work too hard; use #1.)

ii. Verify directly that S(x, t) solves ut = Duxx for all t > 0.

3. (Strauss 2.4, #8, p. 50) Approximation of the Identity. Let S(x, t) be the heat kernel.

(a) Sketch a sequence of pictures of S(x, t0) for fixed t0 values as t0 → 0(
say for t0 = 1, 12 ,

1
4 ,

1
16

)
illustrating the graph of S(x, t0).

(b) What does S(x, t) converge to as an object? In what sense? (Think, informally, of the
graph of S(x, 0).)

4. Transformations and Reductions.

(a) (Bell 8, #3) Show that the advection-diffusion-decay equation

ut = Duxx − cux − λu

can be transformed into a pure diffusion/heat equation using a familiar trick of letting
u(x, t) = w(x, t) exp(αx− βt), for convenient values of α and β.

(b) Show that the equation ut = D(t)uxx can be transformed into the diffusion equation by
changing the time variable
t to τ =

∫ t
0 D(s)ds.



5. Solving the Heat Equation. Consider the Cauchy problem on (0, T )×R: ut = Duxx, u(x, 0) =
φ(x). Find the solution with the following initial data φ, and simplify as much as possible:

(a) (Bell 8.2, #1) φ(x) = 2x.

(b) φ(x) = 1 + 3H(x). Recall that H(x) is the standard Heaviside function. (Use linearity.)

(c) φ(x) = cos(bx). (For this problem, use the Ansatz that u(x, t) = eat cos(bx)—you then
only have to find the correct a and b.)

(d) (Strauss 2.4) φ(x) = e−xH(x). (Write your solution in terms of the erf function; you
may need to complete the square in the exponent.)

6. Waves and Speed of Propagation. Recall that a traveling wave solution u(x, t) = f(x+σt)
to the wave equation utt − c2uxx = 0 must have σ = ±c. Also recall that the concepts of
domain of dependence/influence had a fundamental relationship with the wave speed c.

(a) Show that one can have traveling wave solutions to the heat equation ut = cuxx by
plugging in the traveling wave form and finding f . Note that σ can be arbitrary (in
contrast to the wave equation)!

(b) Looking at the general solution to the Cauchy problem for the heat equation (the con-
volution of the initial data with the heat kernel), describe the “domain of dependence”
(in a sentence) for the solution u at a point (x̂, t̂) in spacetime.
(At what “speed” does information seem to propagate via the heat equation?)

7. 2-D Hypothesizing. Suppose that both w(x, t) and v(x, t) are two solutions to the 1-D
heat equation ut = Duxx.

(a) Show that the function π(x, y, t) = w(x, t)v(y, t) is a solution to the 2-D heat equation
ut = D∆u (recall that ∆ =

∑n
i=1 ∂

2
xi

where n is the dimension of the problem).

(b) Venture a guess (using a double integral) at the solution of the Cauchy problem

ut = D∆u, u(x, y, 0) = ψ(x, y).

8. (Bell 9.1; Strauss 3.3) Duhamel’s Principle, Again. Review HW 4 on Duhamel’s Principle
and Bell’s Section 9.1. Consider the inhomogeneous heat equation:

ut −Duxx = F (x, t), u(x, 0) = 0.

(a) Use the Duhamel procedure to obtain the formula

u(x, t) =

∫ t

0

∫ ∞
−∞

S(x−y, t− τ)F (y, τ)dydτ for the solution of the inhomogeneous equa-

tion above with zero initial data. (Here S(x, t) is the standard heat kernel.)

(b) Suppose that u1(x, t) solves ut − Duxx = F (x, t), u(x, 0) = 0, and u2(x, t) solves
ut −Duxx = 0, u(x, 0) = φ(x). What is the solution to the Cauchy problem
ut −Duxx = F (x, t), u(x, 0) = φ(x)? Justify your answer.

(c) Solve the following inhomogeneous problems:

i. ut − uxx = xt, u(x, 0) = 0.

ii. ut − uxx = 2x sin(t), u(x, 0) = e−|x|.

iii. ut − uxx = 3, u(x, 0) = H(x).
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9. Ill-Posed Problem. Consider the backward heat equation ut + uxx = 0.

(a) Show that each member of the family un(x, t) = 1 + 1
ne

n2t sin(nx) is a solution
(n = 1, 2, 3, ...).

(b) What is lim
n→∞

un(x, 0)? Show your work.

(c) Let t = T be fixed. What happens to un(x, T ) as n→∞?

(d) Deduce the backward heat equation is not well-posed as a Cauchy problem and explain
in a sentence or two.

10. (Bonus) Boundedness and Asymptotics.

(a) Suppose that the initial profile for the heat equation has the property that |φ(x)| ≤ M
for all x, where M is some positive constant. Show that the corresponding solution to
the Cauchy problem satisfies |u(x, t)| ≤M as well for all x ∈ R and all t > 0.

(b) Suppose that φ(x) = e−x for all x ∈ R. Is the solution bounded, as above? Does your
answer bother you—why or why not? (See you answer from 5.(d).)

(c) (Strauss 2.4, #12) Asymptotics. Consider the Cauchy problem for the heat equation
with the initial state φ(x) = H(x).

Let x0 be fixed. Approximate the temperature u(x0, t) for large values of t using a power
series expansion for e−z

2
and integrating term by term. (It may be helpful to remember

that erf(z) is a function you found a power series representation of in Calculus II.)

11. (Bonus) (Strauss 2.4, #14) Suppose now that the initial profile φ has the property that
|φ(x)| ≤ Ceax

2
. Show that there exists a time T such that the solution makes sense for

0 < t < T , but not necessarily after T .

12. (Bonus) (Bell p. 1, #3; Strauss, p. 53 #9 and #10) Polynomials Solutions. There are
polynomial solutions to the heat equation explored here, but note that these solutions are not
bounded at infinity. In this problem, assume that D = 1.

(a) Show that p(x, t) = x4 + 12x2t+ 12t2 solve the heat equation with IC φ(x) = x4.

(b) Show that a function of the form u(x, t) = A(t)x2+B(t)x+C(t) solves the heat equation
with initial condition of φ(x) = x2. (By plugging in, solve for the time-dependent
coefficients.)

(c) Solve the heat equation with the initial data φ(x) = x2, using the integral (convolution)
form. Give your answer in integral form (do not try to integrate it in closed form), but
make the substitution p = (4Dt)−1/2(x− y).

(d) Since the solution to the heat equation Cauchy problem must be unique, deduce the

value of

∫ ∞
−∞

p2e−p
2
dp.

13. (Bonus) Transformations. (Bell 8, #6) Show that Burgers equation ut = Duxx − uux can
be transformed into the heat equation vt = vxx with the famous Cole-Hopf transformation:{

u = ψx

ψ = −2D ln v.

(Note: This is substantial, since this transformation allows us to reduce a nonlinear evolution
equation to a linear evolution that we can explicitly solve.)
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