September 22, 2025
Homework 4: Waves...Man

MATH 404, Fall 2024

Due: ~ Monday, 10/6 in class.
This assignment is about the wave equation on R (and associated topics).
1. Basic Wave Solution. For each of the following IVPs, give the solution.
(a) ugr — Quzr =0, wu(x,0) =sin(x), u(z,0)=0.
(b) ug —4ugy =0, u(x,0) =0, uz,0)= W
(¢) ug — gy =0, u(w,0) =In(1+22), u(x,0) =4+ .
2. (Strauss, Section 2.1, #10) Operator Factoring.

Solve the IVP below using operator factoring as we did for the wave equation:
Ugy + Ugt — 20Uy = 0, w(x,0) = d(x), wi(z,0) = (x).
3. Domain of Dependence/Influence.

(a) (Strauss, Section 2.1, #3) The midpoint of a piano strong of constant tension 7', density p, and
(long) length [ is hit (symmetrically) by a hammer whose head diameter is 2a. A flea is sitting at
a distance [/4 from one end. (Assume that a < [/4.) How long does it take for the disturbance
to reach the flea?

(b) Consider the wave equation usy — (1/4)u,, = 0 with initial velocity zero u:(x,0) = 0 and initial
displacement u(z,0) = ¢(z). Suppose that ¢ is supported in the set [2,4] U [10,14]. (Recall, the
support of a function f is the closure of the set on which f does not vanish.)

i. Give a rough sketch of the domain of influence for the initial condition ¢.

ii. Consider the graph of the domain of influence as a function of ¢ (as t increases). At what
value of ¢ does the domain of influence become a connected set?

iii. For each of the following points (x,t) in space-time, determine the intersection of the domain
of dependence of that point and the support of the initial condition.

A) (3,2 B.) (6,1) c) (7,9 D.) (0,26)
4. (DuZ, pp.161-162) Variable Changes. The Telegraph Equation (see Bell Chapter 7), given by
Ut — gy + Ouy + m2u = 0,
is an example of the wave equation with all possible lower order terms. Consider
Upp = A1 Ugy + AUy + A3UL + g, (1)

(a) Introduce the variable change u(x,t) = exp (ax + t)v(z,t) and plug this form into (). Simplify
and present the resulting PDE.

(b) Since the coefficients a, 8 are arbitrary, show that you can choose them (based on a;, i = 1,2,3,4)
to eliminate the lower order terms involving u; and u,.
(There is nothing special about which two lower order terms we eliminate. However, whatever
lower order term is left, one then has to solve that equation....)

5. (Strauss, Section 2.2, #1 and #5; Bell 7, #2) Energies.

(a) Consider the “plucked string” initial condition supported on the interval [—a, d]

¢(x):{b—b|f| |z] < a

0 lz| >a’

for the standard wave equation on R with wave speed ¢. For some T' > 0, compute E(T) .



(b) Counsider the damped wave equation:
Ut + 5ut - C2Uxx = 0.

Derive the corresponding energy identity here by multiplying by u; and integrating in time and
space (see class notes). You may assume at all times ¢, the solution is compactly supported. Then
deduce that the total energy for the dynamics must decrease as t increases.

(¢) Consider the Klein-Gordon equation:
U — czum +m?u=0.

Define a modified energy functional

B0 =5 [ [Punle ) + (6 0)? +mu(s 0)7] de

Show that the energy, in this sense, is conserved for any solution to the Klein-Gordon equation.
(You may assume at all times ¢, the solution is compactly supported.)

6. (Bell, Chapter 5, #6) Klein-Gordon. Consider the (dispersive) Klein-Gordon equation:
Upp — cQum +m?u =0.

(a) Consider a possible solution of the form w(z,t) = F(x + ct), for F an arbitrary function. Show
that such a solution cannot exist (unless F' = 0).

(b) Now try a modified solution: u(z,t) = F(x + ot), for 0 € R, o # c¢. Determine the form of
solutions, not worrying about the initial conditions or any arbitrary constants that show up. (Be
careful! You will have different cases, depending on the size of o.)

(¢) From the previous part, note that for certain values of o we have oscillatory, bounded, wave
solutions. Since o is a wave speed, we note that there are waves (solutions) that propagate at
speeds other than ¢ (faster than ¢)—this is in contrast to the wave equation (see d’Alembert’s
formula).

To investigate this further, we return to our discussion of dispersion relationships. The dispersion
relation for the Klein-Gordon equation here is w = £+/c2k2 + m?2, where w is the frequency of a
given wave solution and k is the wave number.
i. Verify that u(x,t) = Acos(kx — wt) satisfies the Klein-Gordon equation above if k and w
satisfy the dispersion relationship.
ii. Noting that kx — wt =k (l’ — %t), determine the wave speed c¢(wg) associated with a given
frequency wy.

7. Duhamel’s Principle and Superposition. In this question we consider the inhomogeneous Cauchy
problem

(2)
(a) Suppose u; satisfies with ¢ = 1 = 0; suppose uy satisfies with F' = 0 and ¢ = 0; suppose
ug satisfies with ' =0 and ¢ = 0.
Explain, in detail, how to construct a “full” solution to the inhomogeneous IVP .
(b) We will recall Duhamel’s principle for ODEs.

{utt — Uy = F(x,t)

¢
Consider 7 € R to be a parameter here. Demonstrate that y(¢) = / w(t — 7, 7)dT solves
0

y'(t) + ay = F(t), t > 0; y(0) =0,

where the function w(t, 7) solves the (7-parametrized) homogeneous problem with nonzero initial
data:
w'(t;7) +aw(t;T) =0, t > 0; w(0;7) = F(1).



(¢) Suppose that w = w(z,¢;7) is a solution to the 7-parametrized wave equation

Wy — CWyy =0
w(z,0;7) =0, w(x,0;7) = F(z,7)

(Note, one can obtain a solution to this wave equation using d’Alembert’s approach.)

Show that the function u(z,t) fo — 7;7)dT is a solution to
Ug — czum = F(xz,t), u(x,0) = us(z,0)=0.

(d) Solve the following inhomogeneous Cauchy problems.
i ugy — gy = at; u(z,0) =0, u(z,0) =0
i uy — gy = cos(z); u(z,0) =0, uy(x,0)=(1+2%"!
i, gy — Cuge = €**; u(z,0) =sin(x), u(x,0) =0

8. ODE Problems.

(a) Use ODE methods to solve the following two problems in the solution variable x(t):

. Z+x=0(t)
" 1x(0)=0, (0)=0

.. T4+xz=0
P20 =0, #0) =1

where §(¢) is the “Delta function” (or unit impulse) centered at ¢ = 0.

(b) Make an observation and try to interpret your conclusion from the physical meaning of these ODE
systems (2 sentences).

(c) Try to relate this exercise with Problem 7bc. In particular, can you try to explain where Duhamel’s
principle comes from? What is the procedure “doing” to obtain the non-homogeneous solu-
tion from the homogeneous solution? Hint: https://en.wikipedia.org/wiki/Duhamel’27s_
principle

BONUS

9. (Strauss, Section 2.1, #7) Space Oddity. Show that if both the initial disturbance ¢(z) and the
initial velocity profile ¢(z) are odd functions, then a corresponding solution to the wave equation must
also be an odd function (of z) for every ¢.

10. (Strauss, Section 2.1 and Section 2.1 #3) Solving and Solutions.
(a) Explain why smooth solutions to the transport IVP w; + cu, = F(x,t), wu(x,0) = ug(x) (for c a
constant and ug a smooth function on R) should be unique.
(b) Consider the system
(Or 4+ cOz)v=0
(0y — cOz)u =
v(z,0) = A(x)
u(@,0) = 6()
Show that one has a solution to this system if and only if one can solve the wave equation with
wave speed ¢, and initial disturbance ¢(x) and initial velocity profile ¢ (x).

3)

(c) Deduce (argue) that all solutions to the wave equation IVP on R
(0 + ¢02) (0 — cOz)u =0

u(z,0) = ¢(z) (4)
ui(x,0) = ()

must take on the form of d’Alembert’s solution.


https://en.wikipedia.org/wiki/Duhamel%27s_principle
https://en.wikipedia.org/wiki/Duhamel%27s_principle

11. (Strauss, Section 2.1 and 2.2) Spherical Waves and Attenuation. The three dimensional wave
equation in solution variable u(Z,t) = u(x,y, z,t) is given by

Ut = 02 Au.

(The Laplacian is spatial, i.e., A = Z§:1 92..) If we assume a spherically symmetric solution u(r,t),
where r > 0 is the radial value, the equation we must then solve is

(a)
(b)

()
(d)

9 2
Ut = C° | Upp + ;ur .

Change variables using v = ru to obtain a new equation for v.

Solve for v, and transform back to a solution for u (thereby solving the spherical wave equation
in ).

What happens to the solutions as » — oc0? Does this make sense from the point of view of what
we know about waves and energies? Explain.

In general, in n dimensions, a spherical wave satisfies the equation

-1
wpp = 2 (urr + n . ur> . (5)

Consider a wave that has the form wu(r,t) = a(r)f(t — 8(r)). (The function «(r) is called the
attenuation, and S(r) is called the delay.) The question is whether or not such solutions exist
for arbitrary functions f. Existence of solutions means that distortionless spherical waves with
attenuation are possible.

i. Plug in the special form of the solution into the spherical wave equation to get an ODE
for f.
ii. Set the coefficients of f”, f’, and f equal to zero. Solve the resulting ODEs to see that (unless
u=0) n=1and n = 3 are the only possibilities.
iii. Show that if n = 1, a(r) must be constant (no attenuation possible).
(Thus n = 3 is the only dimension where one can have distortionless spherical wave propaga-
tion with attenuation.)



