
September 2, 2025
Homework 1: Review Material—Solutions

MATH 404, Fall 2024

1. Integration.

(a) Compute, showing all work (not making use of a table of integrals)ˆ ∞
0

(t− 3)e−txdt

First consider the integral ˆ M

0
(t− 3)e−txdt.

Via integration by parts u = (t− 3), dv = e−tx, we haveˆ M

0
(t−3)e−txdt =

(t− 3)

x
e−tx

∣∣∣t=M
t=0
−
ˆ M

0

−1

x
e−txdt =

(t− 3)

x
e−tx

∣∣∣t=M
t=0
− 1

x2
e−tx

∣∣∣M
t=0

.

Thus ˆ M

0
(t− 3)e−txdt =

(M − 3)

x
e−Mx +

3

x
− 1

x2
e−Mx +

1

x2

Taking the limit as M →∞ and using l’Hospital we arrive at the improper Riemann
integral, and have ˆ ∞

0
(t− 3)e−txdt =

3

+

1

x2
,

requiring that x > 0 (otherwise the integral doesn’t converge).

(b) Suppose that f, g are smooth functions that have the property that
f(0) = f ′(0) = g(0) = g′(0) = 0. Show thatˆ L

0
f (4)(x)g(x)dx =

ˆ L

0
f ′′(x)g′′(x)dx+ f ′′′(L)g(L)− f ′′(L)g′(L).

We will use the version of integration by parts that reads as:ˆ b

a
f(x)g′(x)dx = f(x)g(x)

∣∣x=b

x=a
−
ˆ b

a
f ′(x)g(x)dx.

We haveˆ L

0
f (4)(x)g(x)dx = f ′′′(x)g(x)

∣∣x=L

x=0
−
ˆ L

0
f ′′′(x)g′(x)dx

= f ′′′(L)g(L)−
ˆ L

0
f ′′′(x)g′(x)dx

invoking the BC g(0) = 0

= f ′′′(L)g(L)−
[
f ′′(x)g′(x)

∣∣x=L

x=0
−
ˆ L

0
f ′′(x)g′′(x)dx

]
integrating by parts again and invoking the BC g′(0) = 0

= f ′′′(L)g(L)− f ′′(L)g′(L) +

ˆ L

0
f ′′(x)g′′(x)dx

]



(c) Showing your work, compute each of the following integrals for all integers

1 ≤ m,n ≤ 3:

i.
1

π

ˆ π

−π
sin(mx) cos(nx)dx

ii.
1

π

ˆ π

−π
sin(mx) sin(nx)dx

Let’s adopt a convenient notation:

1

π

ˆ π

−π
f(x)g(x)dx ≡ (f, g).

For (sin(mx), cos(nx)) the associated 9 integrals can be computed using basic trig
integrations (with trig identities like double and half angle formulas). Instead, let us
note the product to sum formulae:

sin(mx) cos(nx) =
1

2
[sin((m+ n)x)− sin((m− n)x)]

sin(mx) sin(nx) =
1

2
[cos((m− n)x)− cos((m+ n)x)]

When m = n, these collapse into the more familiar

sin(mx) cos(mx) =
1

2
sin(2mx)

sin2(mx) =
1

2
[1− cos(2mx)]

Each of the above can be integrated using elementary techniques (the trig terms
integrate away on [−π, π]). Then, using our notation, we have (letting m dictate the
row and n the column)

[
(sin(mx), cos(nx))m,n=1,2,3

]
=

0 0 0
0 0 0
0 0 0


[
(sin(mx), cos(nx))m,n=1,2,3

]
=

1 0 0
0 1 0
0 0 1


(d) The families

{sin(nx)}∞n=1 and {cos(nx)}∞n=1

are orthogonal to one another. If we choose any function from either family and
integrate it against any other in terms of (f, g) we get zero. If we integrate two distinct
functions from the same family, those are also zero. The only time we get something
other than zero (1, in fact) is when we form (sin(mx), sin(mx)) or (cos(nx), cos(nx)).
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2. Series.

(a) For each of the following series, determine: if it absolutely converges AC, if it con-
verges but not absolutely C , or if it diverges D. Then state in a sentence or two how
you arrived at your conclusion.

i.
∞∑
n=1

π−n

AC. This is a geometric series that converges since 1
π < 1. In particular, it

converges to
1

π − 1
. Since it is a positive series that converges, it converges ab-

solutely.

ii.
∞∑
n=2

n

n2 − 1

D. This series diverges, for instance, using the limit comparison test or the direct
comparison test with the harmonic series.

iii.

∞∑
n=1

cos(n)

n2

AC. Note that
∣∣∣cos(n)

n2

∣∣∣ ≤ 1

n2
. We have that

∑ 1
n2 converges by the p-test (or

the integral test), and thus
∑∣∣∣ cos(n)

n2

∣∣∣ converges by comparison.

3. Vector Operations.

(a) The divergence of a vector field F at a point x measures the extent to which the vector
field points inward (negative) or outward (positive), in aggregate, at that point. It is
closely related to the flux of that vector field in any small region containing the point
x.

(b) Write out the product rule for the divergence:

div (u~F ) = u(div ~F ) +∇u · ~F ,

where u is a scalar function. (Checking it in 2-D is alright.)

Let’s use the convention that the vector ~v has components vi. Note, then that u~F
is a vector with components (u~F )i = ufi. Thus, when computing a partial we will
be looking at ∂j(ufi). Noting that both of these quantities are scalars, we invoke the
scalar product rule (from Calc. 1).

∂j(ufi) = (∂ju)fi + u(∂jfi).

Thus

div (u~F ) =
∑
j

∂j(ufj) =
∑
j

∂jufj +
∑
j

u∂jfj = ∇u · ~F + u(∇ · ~F ),

by the definition of the divergence.
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4. Kernels of some operations.

(a) Let ~F be a (smooth) conservative vector field with potential function φ. What must
be true of curl ~F = ∇× ~F = ∇×∇φ?

In other words, the curl of a conservative vector field is...(finish this sentence and
justify your claim.)

The curl of a conservative vector field is the zero vector! We can check this by direct
computation, using the equality of mixed partials. Indeed, since ~F is conservative,
~F = ∇φ for some scalar function φ. So ~F = 〈φx, φy, φz〉. Recalling that the curl of a
3-D vector field is

curl ~F = ∇× ~F = (∂yf3 − ∂zf2)~i− (∂xf3 − ∂zf1)~j + (∂xf2 − ∂yf1)~k.

Now, in this case, this reduces to

curl ~F = (∂yφz − ∂zφy)~i− (∂xφz − ∂zφx)~j + (∂xφy − ∂yφx)~k = ~0.

(b) Let ~C = ∇× ~F . What must be true of div ~C = ∇ · ~C = ∇ · (∇× ~F )?

In other words, the divergence of a curl field must be...(finish this sentence and justify
your claim.)

The divergence of a curl field must be zero! We again check by direct computation
using the above description of the curl and, again, the equality of mixed partials.

∇ · curl ~F = ∂x(∂yf3 − ∂zf2)− ∂y(∂xf3 − ∂zf1) + ∂z(∂xf2 − ∂yf1) = 0

after inspection.

5. Integration, II.

(a) Such line integrals represent the area under a two dimensional surface when restricted
to the path Γ. They are computed via a parametrization of the curve Γ and the
calculation of the line element ds.

(b) Compute the surface area (showing all work) of a spherical cap with height h cut
from a sphere with radius ρ.

In general, we are interested in the surface integral:¨
S

(1)dS =

¨
T

1||~ru × ~rv||dudv,

where S is the surface in question, and ~r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 is a parametriza-
tion of S over the region (u, v) ∈ T . (The symbol × is the cross product; ||~v|| refers
to the norm of the vector ~v in R3.)

To compute a surface integral, we need to parameterize ~r = 〈x, y, z〉 the upper hemi-
sphere. This is a standard parametrization (coming from the Spherical to Cartesian
change of variables—u is traditional angular variable in the x-y plane, and v is the
polar angle, emanating from ~k → −~k):

x(u, v) = ρ sin(v) cos(u)

y(u, v) = ρ sin(v) sin(u)

z(u, v) = ρ cos(v)
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Thus (after some extensive calculation with calculus and trig identities):

~ru =〈−ρ sin(v) sin(u), ρ sin(v) cos(u), 0〉
~rv =〈ρ cos(v) cos(u), ρ cos(v) sin(u),−ρ sin(v)〉

~ru × ~rv =〈−ρ2 sin(v) cos(u),−ρ2 sin2(v) sin(u)− ρ2 sin(v) cos(v)

||~ru × ~rv|| =ρ2 sin(v).

Now we need to determine what values of u, v between 0 and π parameterize the cap.
If we allow all values of 0 ≤ v ≤ π we will get the hemisphere. Doing some trig
reveals that for radius ρ and height h, the parameter range we are interested in is

0 ≤ v ≤ arccos
(

1− h
ρ

)
. Thus the double integral we want is:

ˆ 2π

0

ˆ arccos(1−h/ρ)

0
ρ2 sin(v)dvdu = −2πρ2[cos(v)]

arccos(1−h/ρ)
0 = 2πρh.

6. Integration, III.

Recall that for any smooth, oriented curve Γ ⊂ R2 we can define the unit radial (with
positive orientation) vector ~r(x, y) and the unit outward normal vector ~n(x, y). For all
values along Γ, we have d~r · d~n = 0, where d~r = 〈dx, dy〉 and d~n = 〈dy,−dx〉.
Consider C1 to be the semicircle of radius two in the upper half plane with standard
orientation (counter clockwise). Compute the following in any way you’d like.

(a) The average value of the function f(x, y) = x+ y + 2 on C1.

We define the average value to be

f =

ˆ
C1

f(x, y)ds

|C1|
.

Since C1 is the semicircle, we know the length of C1 = 2π. To compute the line inte-
gral, we utilize a standard parameterization with x(t) = 2 cos(t), y(t) = 2 sin(t), t ∈
[0, π]. Recalling the arc length element ds = (dx2 + dy2)1/2, we can invoke the
parametrization, as well as x′(t) = −2 sin(t), y′(t) = 2 cos(t).ˆ

C1

(x+ y + 2)ds =

ˆ π

0
[2 cos(t) + 2 sin(t) + 2]

√
4 cos2(t) + 4 sin2(t)dt.

Invoking the pythagorean trig identity and integrating, we arrive at 8 + 4π. Thus
f = 4+2π

π .

(b) The flux through C1 of the vector field ~F (x, y) = 〈x2y , (1/3)x3 + y〉

ˆ
C1

~F · d~n =

ˆ
C1

〈x2y, (1/3)x3 + y〉 · 〈dy,−dx〉 =

ˆ
C1

x2ydy −
(

1

3
x3 + y

)
dx

We now invoke the parametrization, as above: Using elementary integration, we have
that the integral equals 2π.ˆ

C1

x2ydy −
(

1

3
x2 + y

)
dx =

ˆ π

0
[(64/3) cos3(t) sin(t) + 4 sin2(t)]dt
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(c) Now consider C2 to be the line segment going from (−2, 0) to (2, 0). Compute the
circulation of ~F (as given above) over the closed curve C = C1 ∪ C2.

This is a closed curve, and one can quickly check that ~F is a conservative vector
field. The circulation of a conservative vector field is always zero, by the fundamental
theorem of line integrals.

7. The Laplacian.

(a) Recall that for f(x, y) we have ∆f = ∇ ·∇f = fxx + fyy. Consider polar coordinates
with the change of variable mapping:

θ(x, y) = arctan(y/x)

r(x, y) =
[
x2 + y2

]1/2
.

Thinking of a f as f(r, θ), and using the chain rule, compute the expression for ∆f
in terms of r and θ.

Here we will also need to note the inverse relations:

x = r cos(θ), y = r sin(θ).

We first note that by the chain rule

∂xf =
∂f

∂r

∂r

∂x
+
∂f

∂θ

∂θ

∂x
,

which can be simplified by computing the partials of r, θ. After some work, we see
that

rx =
x

(x2 + y2)1/2
, θx =

−y
x2 + y2

.

Invoking the inverse relations above, we have

rx = cos(θ), θx =
− sin(θ)

r
.

Thus the differentiation in x goes as

∂f

∂x
= fr cos(θ)− fθ

sin(θ)

r
.

A similar calculation shows that

∂f

∂y
= fr sin(θ) + fθ

cos(θ)

r
.

We can then iterate to find the necessary second partials:

∂2
xf = ∂x(fx) = ∂x

[
fr cos(θ)− fθ

sin(θ)

r

]
.
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∂2
xf = ∂x

[
fr cos(θ)− fθ

sin(θ)

r

]
= ∂r

[
fr cos(θ)− fθ

sin(θ)

r

]
cos(θ)− ∂θ

[
fr cos(θ)− fθ

sin(θ)

r

]sin(θ)

r

= frr cos2(θ)− frθ
sin(θ) cos(θ)

r
+ fθ

sin(θ) cos(θ)

r2

+ fr
sin2(θ)

r
− frθ

cos(θ) sin(θ)

r
+ fθθ

sin2(θ)

r2
+ fθ

cos(θ) sin(θ)

r2

Similarly, in y, we have:

∂2
yf = ∂y

[
fr sin(θ) + fθ

cos(θ)

r

]
= ∂r

[
fr sin(θ) + fθ

cos(θ)

r

]
sin(θ) + ∂θ

[
fr sin(θ) + fθ

cos(θ)

r

]cos(θ)

r

= frr sin2(θ) + frθ
sin(θ) cos(θ)

r
− fθ

sin(θ) cos(θ)

r2

+ fr
cos2(θ)

r
+ frθ

cos(θ) sin(θ)

r
+ fθθ

cos2(θ)

r2
− fθ

cos(θ) sin(θ)

r2

Putting it all together, and using the Pythagorean identity:

∆f = ∂2
rf +

∂r
r
f +

∂2
θ

r2
f =

1

r
∂r
[
r∂rf

]
+

1

r2
∂2
θf.

(b) Let Ω be a region bounded by a curve Γ, where Γ is a positively oriented, p.w. smooth,
simple, closed curve in R2. (Note these are the hypotheses for Green’s Theorem.)
Recall that function u is called harmonic if ∆u = 0 (in any dimension).

i. Argue that, if u is harmonic, then
˛

Γ
∇u · ~n ds = 0.

This is a direct application of the divergence theorem, using the description of
the Laplacian as ∆ = div ∇. Since we have assumed that ∆u ≡ 0 on the region
Ω, we can integrate this scalar function to arrive at

¨
Ω

(∆u)dA = 0.

On the other hand, invoking the divergence theorem, we have:
¨

Ω
(∆u)dA =

¨
Ω

div ∇u dA =

˛
Γ
∇u · ~nds.

Putting the two identities together, we have the desired result.

ii. Argue that, if u is harmonic and u(x, y) = 0 on Γ, then

¨
Ω
∇u · ∇u dA = 0.
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What can you infer about u in this case?
Let’s begin by recalling the relation (using the product rule from an earlier prob-
lem):

div (u∇u) = ∇ · (u∇u) = ∇u · ∇u+ u(∇ · ∇u) = |∇u|2 + u(∆u).

Thus, integrating we have:

¨
Ω

div (u∇u)dA =

¨
Ω
∇u · ∇u dA+

¨
Ω
u(∆u) dA.

We invoke the divergence theorem on the first term, as well as the hypothesis
that u ≡ 0 on Γ:¨

Ω
div (u∇u)dA =

˛
Γ
u(∇u · ~n)ds =

˛
Γ
(0)(∇u · ~n)ds = 0.

On the other hand, since we assumed that u was harmonic, we know that ∆u ≡ 0
in Ω, and thus ¨

Ω
u(∆u)dA =

¨
Ω
u(0)dA = 0.

Putting these together, we have that

¨
Ω
∇u · ∇u dA = 0.

(Since ∇u · ∇u = |∇u|2 ≥ 0, we know that |∇u| = 0, and this can only happen if
u = constant. But since we know that u = 0 on Γ, we can conclude that u ≡ 0
on the entirety of Ω.)

8. First order ODE.

(a) Verify that y(x) = x[1 + cos(x)] solves the IVP:

dy

dx
=
y

x
− x sin(x), y(π) = 0.

For our purported solution, we have
dy

dx
= [1+cos(x)]−x sin(x). In addition, we have

that
y

x
= [1+cos(x)]. So

dy

dx
− y
x

= −x sin(x), which confirms that this y satisfies the

ODE. We must also check the initial condition: y(π) = π[1 + cos(π)] = π[1− 1] = 0.
So the initial condition is satisfied as well.

(b) Solve the ODE
t3y′ + 4t2y = e−t, t > 0.

Since t > 0, divide through by t3 to obtain

y′ +
4

t
y = t−3e−t.
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In this case (first order, linear ODE) we can invoke the integrating factor. Here, the
integrating factor is µ = exp

(´
4t−1dt

)
= e4 ln |t| = t4. The ODE can then be written

as: (t4y)′ = te−t. We can then integrate (by parts) to arrive at

t4y = −te−t + e−t + C,

which can be rewritten as

y(t) = t−4e−t − t−3e−t + C.

9. Modeling.

Let P (t) ≥ 0 be some population at time t ≥ 0. Let P (0) = P0 ≥ 0. Consider the
population model

dP

dt
= 2P (100− P )(P − 20), P (0) = P0.

In this model K = 100 is the carrying capacity of the population and M = 20 is the healthy
population minimum.

Without solving or drawing a slope field (both are unpleasant), describe the properties
of the solution in about 3 sentences. (What are the equilibrium solutions? What are the
ultimate possible outcomes for the population (as t → ∞)? How does the “shape” of a
solution and its ultimate outcome depend on the initial data P0?) Use your intuition, and
see what the DE tells you directly. Think about what the IVP is trying to model.

The equilibrium solutions are the values of P for which the function P (t) is stationary,
i.e., P ′ = 0. This occurs for P = 0 (no reproduction), P = 100 (at carrying capacity), and
P = 20 (the healthy population minimum). If the initial population P0 ∈ (0, 20), there are
not enough members of the population to successfully grow, and thus the population P (t)
tends toward zero (decreases). This can be seen since for such values of P , we observe that
dP

dt
< 0. When the initial population P0 ∈ (20, 100), the sign of

dP

dt
> 0, and thus the

population P (t) grows toward the carrying capacity as t → ∞. If the population starts

above the carrying capacity, P0 > 100, then the sign of
dP

dt
< 0 again, and the population

will decrease toward that equilibrium solution P = 100.

10. Second order constant coefficient ODE.

(a) Consider the second order, constant coefficient differential equation in x(t):

x′′ + bx′ + 2x = 0. (1)

Find a value for b so that solutions to this ODE are damped, but not overdamped—
i.e., such that solutions x(t) → 0 exponentially as t → ∞ but still have a periodic
component.

For this to occur, we need the characteristic polynomial to have solutions with real
and imaginary parts. This occurs when the discriminant b2 − 4ac < 0, and thus we
need b2 − 4(2) < 0 =⇒ b2 < 8. This occurs, for instance, if b = 2. (Note that for
b < 0, the solution would not be damped...as you will see below, the solutions would
be negatively damped and would GROW to infinity.)
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(b) Consider the second order, constant coefficient differential equation in x(t):

x′′ − 4x′ + 4x = g(t). (2)

i. Let g(t) = 2e2t. What is the general solution to (2) in this (inhomogeneous)
situation?
The characteristic polynomial is r2 − 4r + 4 = (r − 2)2. Thus we have one real,
repeated root: r = 2. The general solution is

xg(t) = c1e
2t + c2te

2t.

To find the particular solution, we use the method of undetermined coefficients
and we guess that the solution has the form At2e2t. Plugging this in, we note that
..., and thus we conclude that A = ..., and the particular solution is xp(t) = 2e2t.
Thus the general solution to the inhomogeneous problem is x(t) = xp(t)+xg(t) =
2e2t + c1e

2t + c2te
2t.

ii. Let g(t) = 0 and x(0) = 1, x′(0) = 0.
This is just the homogeneous case, and thus we’ll work with xg(t) = c1e

2t+c2te
2t.

We need to compute x′g to use the second initial condition:

x′g(t) = 2c1e
2t + c2e

2t + 2c2te
2t = (2c1 + c2)e2t + 2c2te

2t.

We impose the initial conditions now: first, 1 = xg(0) = c1; secondly, 0 = x′g(0) =
2c1 + c2. With c1 = 1, we conclude that c2 = −2. Thus the solution to the IVP
is x(t) = e2t − 2te2t.
In this (homogeneous) case what is the solution satisfying (2) and the given
initial conditions?

(c) Using the forced ODE
x′′ + 9x = sin(ωt),

explain in about three sentences the resonance phenomenon.

The fundamental set here is purely sinusoidal, and the general solution to the homo-
geneous equation is xg(t) = c1 sin(3t) + c2 cos(3t). If we include a periodic forcing,
the particular solution to the inhomogeneous problem will include a term of the
form xp(t) = A sin(ωt) + B cos(ωt). However, if ω = 3, which is to say that the
periodic forcing matches the natural frequency of the system, the particular solu-
tion needs to be adjusted (as in the previous problem). In this case, we would have
xp(t) = t[A sin(3t) + B cos(3t)]. Note that the solution will remain bounded in the
case where ω 6= 3, but when ω = 3, the solution grows unboundedly in time. This is
resonance—when a solution is forced near its natural frequency, the solutions grow
unboundedly in time.
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