Fourier Practice Questions

MATH 404, Spring 2023

1. For this problem, let $V = \mathbb{R}^3$ be the standard three-dimensional Cartesian vector space with basis vectors $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, and $\mathbf{k} = \langle 0, 0, 1 \rangle$. Recall the inner-product in \mathbb{R}^3 is the standard dot product:

$$\mathbf{v} \cdot \mathbf{w} = \sum_{n=1}^{3} v_n w_n,$$

where $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$.

- (a) What is $\mathbf{i} \cdot \mathbf{j}$? What is $\mathbf{i} \cdot \mathbf{k}$? What is $\mathbf{j} \cdot \mathbf{k}$? What are $\mathbf{i} \cdot \mathbf{i}$, $\mathbf{j} \cdot \mathbf{j}$, $\mathbf{k} \cdot \mathbf{k}$?
- (b) What is $\mathbf{v} \cdot \mathbf{j}$? What is $\mathbf{v} \cdot \mathbf{j}$? What is $\mathbf{v} \cdot \mathbf{k}$?
- (c) Perform a "Fourier decomposition" of the vector \mathbf{v} ; this is to say, what are the coefficients A_n in the sum:

$$\mathbf{v} = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}?$$

- 2. Consider the vector space $V = L^2(0, L)$ with inner-product $(f, g) = \int_0^L f(x)g(x)dx$, and the set of Dirichlet eigenfunctions $\{s_n(x)\} = \left\{\sin\left(\frac{n\pi}{L}x\right)\right\}_{n=1}^{\infty}$.
 - (a) Why is an eigenfunction $s_n(x) \in L^2(0,L)$? Explain.
 - (b) What is (s_n, s_n) ? What is (s_n, s_m) for $m \neq n$?
 - (c) For some function $\phi \in L^2(0,L)$, the Fourier sine series is

$$\phi(x) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi}{L}x\right).$$

If the series converges, what $must A_n$ be?

- (d) Thinking of $\phi(x)$ as an expansion in eigenfunctions, interpret (in about three sentences) this result in terms of the first problem.
- 3. Consider the function $\phi(x) = x(x L)$.
 - (a) What type of boundary conditions does the polynomial satisfy?
 - (b) Determine the appropriate Fourier series by determining the associated coefficients A_n .
 - (c) Repeat the previous parts for the function $\phi(x) = 3$.
 - (d) Compute the Fourier coefficients (sine and cosine) for the function $\phi(x) = x$. What is different about this case?
- 4. Consider the general solution to the Dirichlet wave equation IBVP on [0, L]:

$$u(x,t) = \sum_{n=1}^{\infty} s_n(x) [A_n \sin(\lambda_n^{1/2} ct) + B_n \cos(\lambda_n^{1/2} ct)],$$

where $s_n(x)$ and λ_n are the appropriate eigenfunctions and eigenvalues.

Determine A_n and B_n so that the initial conditions $u(x,0) = \phi(x)$ and $u_t(x,0) = \psi(x)$ (for $\phi, \psi \in L^2(0,L)$) are satisfied.