Day 1: Intro to Ordinary Differential Equations

(Slides Not Typical for This Course)

Math 225

2/1/22




Foundational Material

FUNCTIONS
f:RoR f: R" >R f: R->R™ F:R"R™

Domain, Co-Domain, Range

In/Dependent variables:

x(t), y(x); ulx 1) G(x(2),8); F(y'(2),y" (1), 1)

dx df  dy 0 dy
—_— f/ = —_——= — X = —_— = —_— = DX
dt’ (x) dx  dx’ Oy 8Xy Ox y

Notions of integration and anti-differentiation:

/a ), //Q g(x,y)dA, / F(x)dx, /0 " F(s)ds = F(x)

Sequences, series, and associated notation: a,, E a;, E apx”

i n=1

Notions of change: x(t) =

Required: Calculus | and Il; Suggested: Calculus Il and Linear Algebra
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Modeling and DEs

Differential Equations—partial (PDEs) versus ordinary (ODEs)—are the language
of physical sciences (continuum phenomena)

Mathematical modeling of phenomena:
Newton's second law, conservation of energy, Hooke's law, principle of virtual
work, Hamilton's principle, Ficke's law, Fourier's law, etc.

ODEs and PDEs are branches of mathematics unto themselves

Discrete versus continuous

df f(XO + h) — f(Xo)
dxly, h

b N
/ f(x)dx <+ Z f(x")Ax;

a i=1
Limiting procedures, approximations, THE NATURE OF THE UNIVERSE!
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Applied Mathematics: +he A Big Picture

+ math motivated by a problem in the “real world”
+ studying phenomena of interest using mathematical models

+ developing new theory or applying existing theory in doing so
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Motivational ODE and PDE

MASS-SPRING SYSTEM (Damped Harmonic Oscillator):

x(t) a real-valued function of time t:

mx"(t) + dx'(t) + kx(t) =0

ELASTIC BEAM: w(x,t) is a real-valued function of x and t:

O?w(x, t) + kO;w(x, t) + DOtw(x,t) =0

o)

Evolution of states along t: {(w(t,x), we(t,x)) : x € (0,L)}

Two notions of change in one equation: 0; = %, Ox



https://www.myphysicslab.com/springs/single-spring-en.html
https://drive.google.com/open?id=1-mCnHiqXrH2Xi3JLFfq0SMfPkl535u5i

A Phenomenon of Interest: Flutter!

FLUTTER—A systemic instability in a flow-structure system

occurring when the natural modes of the structure are destabilized by
aerodynamic loading at the interface

Tacoma Narrows Bridge Catastrophe, 1940; “Galloping Gertie”
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https://youtu.be/baDEOM-wvUo
https://youtu.be/j-zczJXSxnw?t=5
https://youtu.be/j-zczJXSxnw?t=200

A Phenomenon of Interest: Disease Dynamics (SIR)

Succeptible/Infectious/Recovered Population Dynamics
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Some Famous ODEs and Terminology

P'=kP and P =kP(K—P) [Exponential and Logistic Growth]

Y +y=y? [Bernoulli's Equation]

X+dx+[k/mlx=F(t) and X+wix=0 [Oscillators]
2

x2% + x% +(x*-4)y=0 [Bessel's Equation]

d? d

dT“; — (1l — xz)d—); +x=0 [Van der Pol's Equations]

X+ f(t)x=g(t) and y”+ (a—2qcos(2x))y =0
[Hill/ Mathieu Equations]

x=o(y —x)
y=x(p—2z)—y [Lorenz’ Equations]
z=xy — Bz
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Differential Operators and Terminology

Operator L: L(x), L(x ’dx’dx2) L(x f)

L[f] = af”" + bf' + cf, L(x)[f] = a(x)f'(x), L(x,f)= xsin(f(x))

A ODE is homogeneous if all terms appearing depend on the
solution variable.

x" +cos(2t)x =0  versus  x" + cos(2t)x = sin(t).

Order: The highest order derivative present.

Coefficients: Things in front of the solution (dependent variable)
and its derivatives.

Data: Boundary, Initial, Inhomogeneous terms




