Heat Equation Activity Solutions

MATH 404, Fall 2019

This activity is worth 10 points total (in-class points = quiz/activity points). Use separate sheets of paper. Try to work orderly, and turn in what you have at the end of class.

1. **Initial conditions.** Consider the “convolution with the heat kernel solution”:

 \[u(x,t) = \frac{1}{2\sqrt{\pi Dt}} \int_{-\infty}^{\infty} \phi(y) \exp \left(-\frac{(x-y)^2}{4Dt} \right) dy. \]

 We want to investigate the initial condition here by taking \(t \downarrow 0 \) in a particular way.

 (a) Consider the variable \(r = \frac{x-y}{2\sqrt{Dt}} \). Compute \(dr \) in terms of \(dy \), and solve for \(y \) in the expression for \(r \).

 \[dr = -\frac{1}{2\sqrt{Dt}} \, dy, \quad y = x - (2\sqrt{Dt})r. \]

 (b) Substitute these values appropriately into the integral expression for \(u(x,t) \). Simplify.

 \[u(x,t) = -\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \phi \left(x - (2\sqrt{Dt})r \right) e^{-r^2} \, dr. \]

 (c) In the result from the previous part, compute \(\lim_{t \downarrow 0} u(x,t) \). (You should get \(f(x) \) as your final answer.)

 \[\lim_{t \downarrow 0} u(x,t) = \frac{\phi(x)}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-r^2} \, dr = f(x). \]

 (d) Thus, given the heat equation \(u_t = Du_{xx} \) with initial condition \(u(x,0) = f(x) \), write out the solution to the Cauchy problem.

 We know that \(\int_{-\infty}^{\infty} f(y)S(x-y,t)dy \) solves the heat equation, and we have just shown that

 \[\lim_{t \downarrow 0} \int_{-\infty}^{\infty} f(y)S(x-y,t)dy = f(x). \]

 Thus

 \[u(x,t) = \int_{-\infty}^{\infty} f(y)S(x-y,t)dy \]

 is the solution to the heat equation Cauchy problem (as long as we interpret the initial condition in terms of this limit).

2. **Energies.** Define \(E(t) = \frac{1}{2} \int_{-\infty}^{\infty} [u(\xi,t)]^2 d\xi \).

 (a) Multiply the heat equation by \(u(x,t) \) and then integrate for all \(x \in \mathbb{R} \); then integrate by parts in space in order to obtain an *energy relation* (using the expression for \(E(t) \) above).

 Multiplying and integrating give us

 \[\int_{-\infty}^{\infty} u_t(\xi,t)u(\xi,t)d\xi - D \int_{-\infty}^{\infty} u_{xx}(\xi,t)u(\xi,t)d\xi = 0. \]

 Using the relation \(\frac{d}{dt} [f^2] = 2f'(t)f(t) \) and integrating by parts in \(x \) in the second term, we have

 \[\frac{1}{2} \frac{d}{dt} \int_{-\infty}^{\infty} [u(\xi,t)]^2 d\xi + D \int_{-\infty}^{\infty} [u_x(\xi,t)]^2 d\xi - D[u_x(\xi,t)u(\xi,t)]_{x \to \infty} = 0 \]
Assuming that the solution $u(x, t)$ decays to zero as $|x| \to \infty$, the boundary term goes away, yielding

$$
\frac{1}{2} \frac{d}{dt} \int_{-\infty}^{\infty} [u(\xi, t)]^2 d\xi + D \int_{-\infty}^{\infty} [u_x(\xi, t)]^2 d\xi = 0.
$$

Then, we can use the FTC to rewrite:

$$
\frac{1}{2} \frac{d}{dt} \int_{-\infty}^{\infty} [u(\xi, t)]^2 d\xi = -D \int_{-\infty}^{\infty} [u_x(\xi, t)]^2 d\xi \quad \iff \quad E(t) = E(0) - D \int_0^t \int_{-\infty}^{\infty} [u_x]^2 d\xi d\tau.
$$

(b) Note, from your previous answer, that energies decay. Explain.

From the first description above, we see that the time rate of change of $E(t)$ is negative, indicating decay. From the second description, it is clear that since $[u_x]^2$ is a positive function, its integral is also positive and being subtracted from $E(0)$, so $E(t) \leq E(0)$. In fact, for any interval of time $[s, t]$, we will have $E(t) \leq E(s)$, which is another way of saying that $E(t)$ is a decreasing function.